Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Econ Entomol ; 111(6): 2617-2631, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30265348

RESUMO

Beneficial arthropods provide important ecosystem services in terms of arthropod pest and weed management, but these services can be adversely affected by farming practices such as tillage. This study investigated the impact of two tillage operations (zone tillage and moldboard plow) on the activity density of several beneficial, epigeal arthropod taxa, and postdispersal weed seed and prey removal in sugar beet agroecosystems. In addition, four omnivorous ground beetle species were selected for a weed-seed choice feeding assay, whereas a single species was selected for a weed-seed age preference assay. Ground beetles were the most commonly collected taxon (via pitfall sampling), with only a few dominant species. Tillage operation did not affect ground beetle activity density; however, spider, centipede, and rove beetle activity densities were higher in the reduced-tillage treatment. Live prey consumption was similar between tillage practices, with more prey consumed during nocturnal hours. More weed seeds were consumed in the reduced-tillage treatment, whereas weed-seed preference differed between the four weed species tested [Setaria pumila (Poir.) Roem. & Schult., Echinochloa crus-galli (L.), Kochia scoparia (L.), and Chenopodium album (L.)]. In the weed-seed choice feeding assay, significantly more broad-leaf weed seeds (C. album and K. scoparia) were consumed compared with grassy weed seeds (E. crus-galli and S. pumila). No preference for seed age was detected for E. crus-galli, but Harpalus pensylvanicus (De Geer) preferred old C. album seeds over fresh seeds. Zone tillage is compatible with ecosystem services, providing critical habitat within agricultural ecosystems needed to conserve beneficial, edaphic arthropods.


Assuntos
Agricultura/métodos , Beta vulgaris , Biodiversidade , Besouros/fisiologia , Controle Biológico de Vetores , Animais , Preferências Alimentares , Plantas Daninhas , Densidade Demográfica , Sementes , Controle de Plantas Daninhas
2.
Pest Manag Sci ; 72(6): 1099-109, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26373258

RESUMO

BACKGROUND: Seed treatment insecticides have become a popular management option for early-season insect control. This study investigated the total uptake and translocation of seed-applied [(14) C]imidacloprid, [(14) C]clothianidin and [(14) C]flupyradifurone into different plant parts in three soybean vegetative stages (VC, V1 and V2). The effects of soil moisture stress on insecticide uptake and translocation were also assessed among treatments. We hypothesized that (1) uptake and translocation would be different among the insecticides owing to differences in water solubility, and (2) moisture stress would increase insecticide uptake and translocation. RESULTS: Uptake and translocation did not follow a clear trend in the three vegetative stages. Initially, flupyradifurone uptake was greater than clothianidin uptake in VC soybeans. In V1 soybeans, differences in uptake among the three insecticides were not apparent and unaffected by soil moisture stress. Clothianidin was negatively affected by soil moisture stress in V2 soybeans, while imidacloprid and flupyradifurone were unaffected. Specifically, soil moisture stress had a positive effect on the distribution of flupyradifurone in leaves. This was not observed with the neonicotinoids. CONCLUSIONS: This study enhances our understanding of the uptake and distribution of insecticides used as seed treatments in soybean. The uptake and translocation of these insecticides differed in response to soil moisture stress. © 2015 Society of Chemical Industry.


Assuntos
4-Butirolactona/análogos & derivados , Glycine max/metabolismo , Guanidinas/farmacocinética , Imidazóis/farmacocinética , Inseticidas/farmacocinética , Nitrocompostos/farmacocinética , Piridinas/farmacocinética , Sementes/metabolismo , Tiazóis/farmacocinética , 4-Butirolactona/farmacocinética , Neonicotinoides , Solo/química , Água/análise
3.
Conserv Biol ; 29(5): 1337-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25926004

RESUMO

Predicting a species' distribution can be helpful for evaluating management actions such as critical habitat designations under the U.S. Endangered Species Act or habitat acquisition and rehabilitation. Whooping Cranes (Grus americana) are one of the rarest birds in the world, and conservation and management of habitat is required to ensure their survival. We developed a species distribution model (SDM) that could be used to inform habitat management actions for Whooping Cranes within the state of Nebraska (U.S.A.). We collated 407 opportunistic Whooping Crane group records reported from 1988 to 2012. Most records of Whooping Cranes were contributed by the public; therefore, developing an SDM that accounted for sampling bias was essential because observations at some migration stopover locations may be under represented. An auxiliary data set, required to explore the influence of sampling bias, was derived with expert elicitation. Using our SDM, we compared an intensively managed area in the Central Platte River Valley with the Niobrara National Scenic River in northern Nebraska. Our results suggest, during the peak of migration, Whooping Crane abundance was 262.2 (90% CI 40.2-3144.2) times higher per unit area in the Central Platte River Valley relative to the Niobrara National Scenic River. Although we compared only 2 areas, our model could be used to evaluate any region within the state of Nebraska. Furthermore, our expert-informed modeling approach could be applied to opportunistic presence-only data when sampling bias is a concern and expert knowledge is available.


Assuntos
Migração Animal , Aves/fisiologia , Conservação dos Recursos Naturais/métodos , Ecossistema , Espécies em Perigo de Extinção , Animais , Modelos Biológicos , Nebraska
4.
Ecol Evol ; 3(16): 5225-36, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24455151

RESUMO

Species distribution models (SDM) are tools used to determine environmental features that influence the geographic distribution of species' abundance and have been used to analyze presence-only records. Analysis of presence-only records may require correction for nondetection sampling bias to yield reliable conclusions. In addition, individuals of some species of animals may be highly aggregated and standard SDMs ignore environmental features that may influence aggregation behavior.We contend that nondetection sampling bias can be treated as missing data. Statistical theory and corrective methods are well developed for missing data, but have been ignored in the literature on SDMs. We developed a marked inhomogeneous Poisson point process model that accounted for nondetection and aggregation behavior in animals and tested our methods on simulated data.Correcting for nondetection sampling bias requires estimates of the probability of detection which must be obtained from auxiliary data, as presence-only data do not contain information about the detection mechanism. Weighted likelihood methods can be used to correct for nondetection if estimates of the probability of detection are available. We used an inhomogeneous Poisson point process model to model group abundance, a zero-truncated generalized linear model to model group size, and combined these two models to describe the distribution of abundance. Our methods performed well on simulated data when nondetection was accounted for and poorly when detection was ignored.We recommend researchers consider the effects of nondetection sampling bias when modeling species distributions using presence-only data. If information about the detection process is available, we recommend researchers explore the effects of nondetection and, when warranted, correct the bias using our methods. We developed our methods to analyze opportunistic presence-only records of whooping cranes (Grus americana), but expect that our methods will be useful to ecologists analyzing opportunistic presence-only records of other species of animals.

5.
Pest Manag Sci ; 65(10): 1071-81, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19484699

RESUMO

BACKGROUND: The high dose plus refuge is one of the major components of the resistance management plan mandated for transgenic corn expressing Cry toxins from Bacillus thuringiensis Berliner (Bt) that targets the European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae). This strategy was based on assumptions such as functional recessive inheritance, which has not been previously tested for O. nubilalis. The authors used a field-derived resistant strain of O. nubilalis to define the nature of resistance to Cry1Ab toxin by examining the inheritance and on-plant survival of susceptible and resistant insects and their F(1) progeny. RESULTS: The resistant strain exhibited > 800-fold resistance to Cry1Ab. Resistance was primarily autosomal and controlled by more than one locus or multiple alleles at one locus. The degree of dominance D calculated on the basis of LC(50) values was - 0.45(h' = 0.27), indicating that resistance was incompletely recessive. No survivors were found on vegetative-stage Bt corn, although both resistant larvae and their F(1) progeny were able to survive on reproductive corn 15 days after infestation. CONCLUSIONS: A field derived O. nubilalis strain exhibited high levels of resistance to Cry1Ab and survived on transgenic corn by feeding on tissues with low Cry1Ab expression. The Cry1Ab resistance was primarily autosomal, incompletely recessive and polygenic. Tissue and on-plant survival data indicated that dominance varies depending on plant stage.


Assuntos
Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Mariposas/genética , Zea mays/genética , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Feminino , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Padrões de Herança , Inseticidas/metabolismo , Masculino , Mariposas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Zea mays/metabolismo
6.
J Econ Entomol ; 97(1): 67-73, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14998128

RESUMO

Blissus occiduus Barber is an important pest of buffalograss, Buchloë dactyloides (Nuttall) Engelmann, turf. No-choice studies documented the susceptibility of selected turfgrasses, crops, and weeds to B. occiduus feeding. Highly to moderately susceptible grasses included buffalograss; yellow Setaria glauca (L.) and green foxtail Setaria viridis (L.); Kentucky bluegrass, Poa pratensis L.; perennial ryegrass, Lolium perenne L.; brome, Bromus spp. Leyss.; zoysiagrass, Zoysia japonica Steudel; Bermuda grass, Cynodon dactylon (L.) Pers.; sorghum, Sorghum bicolor (L.) Moench; tall fescue, Festuca arundinacea Schreb.; and barley Hordeum vulgare (L.). Slightly to nonsusceptible grasses included fine fescue, Festuca ovina hirtula L.; rye, Secale cereale L.; crabgrass Digitaria sanguinalis (L.); bentgrass, Agrostis palustris Huds.; wheat, Tritium aestivun L.; corn, Zea mays L.; fall panicum Panicum dichotomiflorum Michx.; and St. Augustinegrass, Stenotaphrum secundatum (Walt.) Kuntze. The reproductive potential of B. occiduus was also investigated on these same grasses. B. occiduus produced offspring on 15 of the 18 turfgrass, crop, and weed species evaluated. No reproduction occurred on either Bermuda grass or St. Augustinegrass, and buffalograss plants were killed by B. occiduus feeding before offspring could be produced.


Assuntos
Hemípteros/fisiologia , Poaceae , Animais , Ingestão de Alimentos , Hemípteros/crescimento & desenvolvimento , Doenças das Plantas , Sorghum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...